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Finite-state models, event logics and
statistics in speech recognition

By Julie Car son - Berndsen

Department of Computer Science, University College Dublin,
Bel¯eld, Dublin 4, Ireland

This paper presents a constraint-based approach to speech recognition which com-
bines aspects of event logic with e¯ cient processing strategies. Although stochastic
approaches are currently at the forefront of speech-recognition applications, it has
now been recognized that linguistic structure is required in order to deal with the
problem of recognizing new words. The computational linguistic approach presented
here o¬ers solutions to the problems of how to process words which have not been
heard before, and how to develop ­ ne-grained knowledge representation and process-
ing techniques for linguistic units smaller than the word. Furthermore, it is investi-
gated how statistical data can be integrated into the phonological constraint model
in order to minimize the discrepancy between expectations de­ ned in the top-down
constraints and the actual data.

Keywords: ¯nite-state techniques; multilinearity; events; speech recognition

1. Introduction

One of the major problems in the area of speech technology concerns the treatment
of new words. In general, a new word refers to any structure that is well-formed with
respect to the phonological and morphological constraints of a particular language
but which is not part of a lexicon of that language. For example, the word blant is
not found in any English lexicon, but a native speaker of the language would con-
sider it to be well-formed (as opposed to a form such as bnanlt, which is considered
ill-formed). Such forms point to idiosyncratic gaps in the lexicon and, thus, could
potentially become words of the language in the future. In the context of speech
recognition, the term `new word’ is usually restricted to mean new with respect to
a particular corpus. While treatment of this phenomenon is one of the motivations
for the model presented in this paper, the model itself assumes the broader de­ -
nition of new words to refer to potential forms not included in the lexicon of the
language.

In order to recognize or generate new words, information about their internal
structure is required. It is now generally accepted that morphological and phono-
logical constraints are required either implicitly (as in hidden Markov models) or
explicitly, in speech-technology applications. While there is no doubt that stochas-
tic approaches to speech recognition are at the forefront of current research and
form the basis of most commercial applications, Smolensky (1999) has pointed out
that `the potential for phonological theory to improve the performance of speech-
recognition systems remains largely unrealized’. This paper describes the Time Map
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model, a computational model of phonological interpretation for speech-recognition
applications developed by the author since the early 1990s and recently reported in
Carson-Berndsen (1998).

The Time Map model uses ­ nite-state methodology and an event logic to demon-
strate how declarative descriptions of phonological constraints can play a role in
speech recognition (see also Wagner (1997) for a speech-synthesis application). The
main aim of the work has not been to build a speech-recognition system that can
compete with stochastic systems in terms of system performance, but, rather, to
design a knowledge-based multilinear component for a speech-recognition system
that uses phonological well-formedness constraints and which is demonstrably of
value in recognizing new words, modelling and investigating coarticulation e¬ects
(temporal overlap of properties), and dealing with underspeci­ ed structures. The
long-term goal of this work is, therefore, to provide a linguistic basis for integrating
symbolic and stochastic approaches to speech recognition. While initial research on
this model has concentrated purely on the symbolic approach, it has already been
demonstrated that the explicit incorporation of phonological knowledge can provide
useful structural constraints for the ­ ne tuning of stochastic models (Jusek et al .
1994). The penultimate section of this paper investigates the extent to which sta-
tistical information can be integrated into the symbolic model for the purposes of
application-speci­ c tuning.

The main motivation for the Time Map approach to speech recognition concerns
the compositionality and variability of spoken language, which can only be catered
for to a limited extent by concatenative models, which assume a rigid segmentation
into non-overlapping units at some level of granularity (e.g. diphones, phonemes,
demi-syllables, syllables). When dealing with speech recognition, inputs are not in the
form of discrete non-overlapping elements, as is usual in written language processing,
rather they are lattices containing competing hypotheses and possibly conjunctions
in the case of overlapping information. The treatment of such gaps and overlaps in
the input lattice is required at all levels of processing and is termed the lattice-to-
chart problem. Furthermore, the predictive skill of the native speaker of a language,
which allows the projection of a ­ nite set of actual structures onto a possibly in­ nite
set of potential (well-formed) structures, must also be addressed if the `new-word’
problem is to be solved.

The Time Map model of phonological interpretation assumes lattices of acoustic{
phonetic events as input and uses parallel ­ nite-state machines together with an event
logic to recognize well-formed syllable structures, allowing a distinction to be made
between actual (i.e. those in the lexicon) and potential forms. The speech signal is rep-
resented as tiers of features which are interpreted in terms of overlap and precedence
relations between events, avoiding a rigid segmentation into non-overlapping units
and allowing coarticulation variants to be modelled. The constraint-based Time Map
model of phonological interpretation has been implemented and evaluated within a
linguistic speech-recognition system that uses an incremental architecture. Carson-
Berndsen (1998) provides further details.

This paper will ­ rst introduce the ­ nite-state methodology and motivate the use
of multilinear representations of phonological structures in the context of speech
recognition. The temporal interpretation of these structures with respect to an event
logic will then be presented and the Time Map model will be discussed in the context
of a linguistic speech-recognition system. Finally, the components of the implemented
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model that lend themselves to the incorporation of statistical data will be highlighted
in the context of the overall architecture.

2. Finite-state models

Finite-state techniques have been used extensively in both computational phonol-
ogy and speech recognition. However, it would be fair to say that much of the
research into ­ nite-state techniques in phonology has not concentrated particularly
on speech-technology applications, and, conversely, statistical ­ nite-state models,
such as hidden Markov models, have not, in the majority of cases, made explicit
use of phonological constraints. This section will concentrate on those aspects of
­ nite-state phonology that are relevant to the Time Map model; further background
information can be found in Carson-Berndsen (1998).

Finite-state phonology distinguishes between linear and multilinear representa-
tions. Linear ­ nite-state phonology|exhibited in the work of Koskenniemi (1983),
Kaplan & Kay (1994) and others|has been very in®uential in the area of computa-
tional linguistics in general, and the methodology has been used in a wide application
area covering morphological analysers, spellers, hyphenators, part-of-speech tagging,
indexing, and retrieval (see the Web pages of Xerox Research and Lingsofty). Mul-
tilinear ­ nite-state phonology has dealt with the formalization and implementation
of nonlinear models such as autosegmental phonology and non-concatenative mor-
phology by Kay (1987), Bird & Ellison (1994), Kornai (1995) and others. The Time
Map approach is concerned with multilinear ­ nite-state phonology. It di¬ers from
the above, however, in that it aims to provide a complete set of constraints on syl-
lable structures and in that it has been integrated into an actual speech-recognition
application for German.

Constraints on phonological well-formedness can be represented declaratively in
terms of networks which can be interpreted by ­ nite-state automata. Such con-
straints, known as phonotactics, represent the possible combinations of sounds of a
language within a particular phonological domain, usually the syllable. An exam-
ple of such an automaton representation, of CCV- combinations in German syllable
onsets, is depicted in the network of ­ gure 1. The Time Map model extends this sim-
ple linear model of phonotactic constraints to a multilinear model where labels on
the arcs of the automaton representation are no longer simple phonemes, but, rather,
represent constraints on temporal overlap relations which occur in each structural
position. Examples of such constraints for two transitions are shown in the ­ gure.
The arcs specify only those constraints required in the particular structural position,
i.e. they are based on natural classes of features and are, in general, underspeci­ ed
with respect to all the features needed to de­ ne any individual sound.

The advantage of this type of representation of phonotactic constraints is that an
interpretation of multilinear phonological representations, as found in autosegmental
and articulatory phonology, is made possible. Figure 2 shows a multilinear represen-
tation of the potential word blant including coarticulation. It consists of a set of
parallel tiers of features, each of which has its own temporal pattern or melody. Only
three phonological tiers are shown for the purposes of illustration. Each tier has its
own segmentation and the startpoints and endpoints of each of the features on the
tiers may di¬er, which makes the multilinear representation fundamentally di¬erent

y Xerox: http://www.xrce.xerox.com/research/mltt/fst/; Lingsoft: http://www.lingsoft.­ /.
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Ci: voiceless ° plosive

Ci: voiced ° fricative
Cj: fricative ° labial
Ck: voiced ° labial

Figure 1. An automaton representation of German CCV- combinations.

voiced

plosive

labial alveolar back apical

lateral vowel-like nasal plosive

voiceless

100 600

Figure 2. A multilinear representation of the potential word blant.

from a standard segmental phonological representation in which all the features are
subject to the same segmentation.

The phonotactic automaton de­ nes a structured set of constraints which repre-
sents a complete phonotactics of a language and can distinguish between well-formed
and ill-formed structures independent of any particular corpus and, indeed, of any
particular speaker. The temporal constraints of the phonotactics do not assume that
a strict segmentation into non-overlapping units has taken place and, therefore, coar-
ticulation phenomena and many speech variants can be modelled in the multilinear
representation.

3. Event logics

The Time Map model proposes a ®exible non-segmental approach to speech recogni-
tion, which incorporates the notion of compositionality by employing several sources
of information simultaneously. Such an approach avoids a strict segmentation of the
speech signal into phonemes or other units of similar granularity, and, therefore, the
acoustic front-end does not have to classify over phonological symbols, but can detect
autonomous acoustic features from the signal. The acoustic feature representation is
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analogous to the multilinear representation depicted in ­ gure 2, except, of course,
that it consists of more than three tiers. This representation of acoustic information
in a multilinear structure of sequential and parallel features is nearer to the sig-
nal than the phoneme sequences of more traditional phonologies. In order to relate
the features in such a representation both to the speech signal and to the temporal
constraints speci­ ed in the phonotactic automaton, the Time Map model uses an
event logic based on time-type domains which coexist as di¬erent perspectives on
spoken-language utterances (see Gibbon 1992). The Time Map model is primarily
concerned with a relative-time domain (Trel), which is an abstract temporal domain
in which categories are assumed to have duration and can be viewed as intervals
with temporal relations between them, and an absolute-time domain (Tab s ), which
is an utterance time domain in which categories have a temporal annotation and,
therefore, a direct reference to real signal time.

The problem of representing temporal knowledge and of temporal reasoning with
this knowledge has been investigated by Allen (1983), Van Benthem (1983) and
Freksa (1992), among others. Building on this work, proposals have been made in
computational phonology for providing multilinear phonological representations with
a formal interpretation using events and the axioms of event logic (Bird & Klein 1990;
Carson-Berndsen 1998), such that feature co-occurrence (or association in autoseg-
mental phonology terms) is interpreted as temporal overlap and sequencing as tem-
poral precedence. Although such an approach allows the explicit introduction of a
temporal dimension into the phonological description, a restriction of this interpre-
tation to Trel, as proposed by Bird (1995), has the consequence that no reference can
be made to actual speech tokens with absolute-time annotations. Speech recogni-
tion, however, requires a mapping from absolute-time annotations to a relative-time
domain in which actual time is no longer needed (Tab s ! Trel).

The Time Map model distinguishes between events in Trel and events in Tab s .

A relative-time event is de­ ned as an ordered pair = hI; F i, where I refers
to some interval in the time domain Trel and F refers to a feature or property of
the interval.

For example, in the multilinear representation in ­ gure 2, the feature voiced on the
phonation tier can be a relative-time event 1 = hI1; voiced p h on ation i.
An absolute-time event is de­ ned as an ordered pair = hht s ; tfi; F i, where t s

is the starting time of the interval and tf is the ­ nishing time of the interval in
the time domain Tab s . F is the feature or property of the interval bounded by t s

and tf .

From the perspective of the absolute-time domain, the feature voiced of ­ gure 2 can
be an absolute-time event 1 = hh113; 432i; voiced p h on ation i.

Relative-time events and absolute-time events are governed by systems of axioms,
and the basic rule of inference is modus ponens. The complete axiom set is given in
Carson-Berndsen (1998, 73¬); a subset for each event type is given below for illustra-
tion. There are seven axioms governing the temporal relations between relative-time
events. Those governing overlap ( ) and precedence ( ) are

R1 : i i;

R2 : i j ! j i;

R3 : i j ! : j i:
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There are 14 axioms governing the relations of temporal inclusion, overlap and prece-
dence between absolute-time events. Examples of an axiom governing overlap and an
axiom governing precedence of two absolute-time events, 1 = hhts 1; tf1i; F1i and

2 = hht s 2; tf2i; F2i, are given in A3 and A5, respectively:

A3 : t s 1 t s 2 ^ tf1 ts 2 ! 1 2

A5 : tf1 < t s 2 ! 1 2:

Applying these axioms in the time domain Tab s to the events in the multilinear
representation of ­ gure 2, for example, would allow the inference to be made that
the event with the feature voiced overlaps ( ) the event with the feature plosive,
and precedes ( ) the event with the feature voiceless. There is a close relationship
between absolute-time events and relative-time events; the latter is an abstraction
of the former, that is to say, it represents the same facts but in a di¬erent tempo-
ral domain. Although the relative-time domain and the absolute-time domain are
conceptually separate, they can be con®ated for the purposes of implementation.

4. Finite-state models and event logics in speech recognition

The ­ nite-state model and the event logic together form the basis for a constraint-
based approach to phonological parsing based on the temporal interpretation of
phonological categories as events, and using a ®exible notion of compositionality
based on underspeci­ ed structures with autosegmental tiers of parallel phonetic and
phonological events. The overall architecture of the Time Map model in the context
of linguistic word recognition is depicted in ­ gure 3.

The autonomous feature-extraction component and the word parser provide the
interfaces to the model. Features are detected individually from the speech signal
by an autonomous feature-extraction component, which serves as a front-end to the
phonological parser. The feature-extraction component does not classify over phones
or phonemes but rather treats each feature as autonomous.

The features detected by the feature-extraction component are output together
with their temporal annotations or boundary points and are represented in the ­ g-
ure in terms of parallel tiers of autonomous features; for illustrative purposes, only
three tiers are shown. Each tier in this linear representation has its own temporal
pattern or melody, and, therefore, the segmentation function across tiers is not the
same as would be assumed by segmental phonologies. Rather than performing a
segmentation into connected chart nodes, the Time Map solution to the lattice-to-
chart problem is based on a mapping from the temporal annotations or boundary
points to temporal relations between the hypotheses using an event logic. Parsing is
then carried out entirely using the relations rather than the temporal annotations.
Gaps are interpreted in terms of immediate precedence relations and overlapping
properties are interpreted in terms of overlap relations. This approach is suitable for
incremental processing.

As was discussed in the section on ­ nite-state models, the phonotactic automaton
of the phonological parser provides top-down constraints on the interpretation of the
multilinear representations, specifying which overlap and precedence relations are
expected by the phonotactics. Each time a ­ nal state of the automaton is reached,
a well-formed syllable structure has been found. Since the input to the phonological
parser is, in general, assumed to be underspeci­ ed due to noise, the Time Map model
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overlap
constraints

tiers

{b l a n t h}

autonomous
feature
extraction actual

syllables
potential
syllables

corpus
lexicon

word
parser

well-formed
syllable
structures

phonological parser

C1 Ci

Cj
Ck

C2

Figure 3. The Time Map model in the context of linguistic speech recognition.

must provide means of minimizing the discrepancy between the expectations de­ ned
in the top-down constraints and the actual data by allowing constraint relaxation and
constraint enhancement. Constraint relaxation should be performed if only some of
the constraints speci­ ed by the phonotactic automaton can be satis­ ed. Constraint
enhancement should be performed to further specify the output if the constraints
specify expectations that do not con®ict with information found in the input. Clearly,
constraint relaxation and constraint enhancement are interdependent and require a
ranking of the constraints. This point will be discussed further in the next section. It
is important to note, however, that the application of constraint enhancement does
not guarantee that the output syllable structures are fully speci­ ed, only that they
are well-formed.

Coarticulation is modelled by overlap of information in the multilinear represen-
tations. Since the overlap relations speci­ ed in the phonotactic constraints do not
require features on di¬erent tiers to begin and end at the same time, a strict seg-
mentation into non-overlapping units is not necessary. Phonological phenomena such
as assimilations and elisions can, therefore, be represented in line with articulatory
phonology in terms of feature (or gestural) overlap and magnitude. The degrees of
overlap and magnitude are relevant for constraint relaxation and enhancement.

The phonological parser outputs well-formed syllable structures which are then
input to a corpus lexicon. The corpus lexicon acts as a ­ lter distinguishing between
actual and potential syllables by assigning a higher con­ dence value to actual sylla-
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bles of the corpus. These ranked syllable hypotheses are then passed, together with
their temporal annotations, to the word parser. Since the syllable structures may be
underspeci­ ed, the lexicon is feature based and, therefore, full speci­ cations can be
provided for corpus syllables if required. However, fully speci­ ed structures are not
assumed by the word parser, since the main aim of this approach is to postpone a
full speci­ cation in order to reduce the number of hypotheses.

The Time Map model has been implemented and tested within a linguistic word-
recognition system, which is part of an experimental development environment for
speech-recognition architectures. Within this system, the components can demon-
strate di¬ering interaction strategies and parameter settings for di¬erent types of
analysis. Although performance was not the main concern of this work, a diagnostic
evaluation has been performed with varying parametrizations of the system, which
has led to some very promising results. As was mentioned above, the well-formed
structures recognized at each level are in general underspeci­ ed, but full speci­ ca-
tions in terms of phonemes or syllables can be calculated for evaluation. However,
since this approach explicitly avoids a segmentation of the speech signal into non-
overlapping units, a standard string-alignment evaluation procedure was not suitable
for assessing the performance of the system.

A diagnostic evaluation procedure for the Time Map model was developed that
consisted of a logical evaluation, with respect to a data model, and an empirical
evaluation, with respect to real signal data. The logical evaluation was responsible
for testing the soundness and completeness of the parser and knowledge components
of the model with fully speci­ ed data, and the empirical evaluation tested the per-
formance of the model in the context of the complete word-recognition system. In
addition to a string-alignment evaluation, a Time Map evaluation procedure was
performed. With one particular parametrization of the system, a phoneme recog-
nition rate of 66.97% and a syllable recognition rate of 35.19% were attained on
many-speaker utterances of spontaneous scheduling task dialogues. Diagnostic eval-
uation showed that the relatively low syllable-recognition rate was due to one or two
features being unreliable, leading to the complete syllable not being recognized. Fur-
thermore, since phoneme recognition was not a task of the phonological parser, the
phoneme rate was calculated on the basis of the recognized syllables. However, the
results are remarkable for a purely knowledge-based system and it is anticipated that
improvements will be made by more e¯ cient constraint-relaxation and constraint-
enhancement procedures, as will be discussed in the next section. Further details of
the evaluation procedure and the results can be found in Carson-Berndsen (1998).

5. Integrating statistics

The Time Map model is a formally speci­ ed linguistic{symbolic approach with ­ ne
granularity which o¬ers a solution to the problem of projecting onto potentially
well-formed structures at the phonetics{phonology interface in speech recognition.
However, in the same way that the ­ ne-grained knowledge of this model has been
used to ­ ne-tune stochastic models with considerable success, so it is also possible
to use statistical information to ­ ne-tune the Time Map approach for speci­ c appli-
cations. The rest of this paper identi­ es the areas in which statistics can play a role
and discusses these with respect to the overall architecture. There are three main
integration areas for statistics in the Time Map model which di¬er in granularity.
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The ­ rst integration area is constraint ranking, which represents the lowest level of
granularity in that the constraints refer to individual temporal relations. The second
area of integration is in connection with the weighting of the phonotactic automaton.
Automaton weighting is a higher level of granularity in that the whole transition is
weighted rather than individual constraints. The third integration area for statistics
is the lexicon that refers to a yet higher level of granularity, namely the syllable.

The notion of constraint ranking was seen in the previous section to play an impor-
tant role in constraint relaxation and constraint enhancement. Constraint ranking for
this model can be based on a number of factors: linguistic-preferential, cognitive and
statistical. Linguistic-preferential refers to issues of markedness and defaults, cogni-
tive refers to human processing issues, and statistical refers to data-oriented issues.
The rest of this section will only be concerned with such data-oriented ranking,
although, clearly, it is more likely that a combination of the factors will be appro-
priate for constraint ranking, and, therefore, a free parametrization of the system
should allow adequate parameters to be chosen that de­ ne a compromise between
maximal recognition rates and minimal analysis overhead.

Constraints may be ranked with respect to frequency, duration and percentage
overlap of features in speci­ c structural contexts. This information can either be spe-
ci­ c to a single corpus or may be based on data from several di¬erent corpora. Based
on this ranking, constraint relaxation can be applied when an infrequent feature is
encountered or a duration is outside a standard deviation, for example. Constraint
enhancement can also be applied according to such a ranking when a frequent fea-
ture is expected but not present in the input but there is nothing in the input that
would exclude it. This method of constraint ranking for relaxation and enhancement
has yet to be integrated into the model, but this is the integration area for statistics
which could lead to reductions in the error rate. The other two integration areas
for statistics will in®uence the size of the search space and the con­ dence of the
hypotheses and, thus, improve accuracy by reducing the number of false positives.

The second area of integration of statistics in the Time Map model is in connec-
tion with corpus-based ­ ne-tuning of the phonotactic automaton. Using corpus-based
statistics, weights can be calculated for the individual transitions in the automaton,
and, in line with proposals made by Pereira & Riley (1996), the total weight can
be de­ ned, using commutative semirings as a formal basis, as the extension of the
weights of the corresponding paths. In addition to determinization and minimiza-
tion, which make the automaton more e¯ cient from a processing viewpoint, it may
also be interesting to experiment with speci­ c data-oriented phonotactic models
which are generated with respect to particular corpora. For example, Belz (1998)
presents an approach for the automatic acquisition of ­ nite-state models of phono-
tactic constraints based on genetic algorithms. The composition of the data-oriented
automaton and the Time Map automaton would be another method of assigning a
corpus-based weighting to the phonotactic automaton. This is currently being inves-
tigated.

The third area of integration for statistics is the lexicon, and this is the component
of the Time Map model that has made the most use of statistical information thus
far. Since the lexicon speci­ es only those syllables that are in the corpus, it has been
possible to include in the syllable entries statistical information such as frequency,
average duration and standard deviation, both of the syllable as a whole and of the
duration based on the average durations of its individual parts taking context infor-
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mation into account. Currently, this is the only place in the Time Map model where
a corpus-based ranking is performed by providing actual (corpus) syllables with a
higher con­ dence value than potential syllables, and a more ­ ne-grained ranking of
hypotheses within the category of actual syllables is performed by allowing syllable
hypotheses with the greatest degree of speci­ cation and which most closely match
the average durations to be ranked higher than their counterparts. This approach is
currently under development in the context of an ongoing research project.

This section has been concerned with the integration of statistics into the Time
Map model. It has been shown with respect to the overall architecture of the model
that there are a number of areas in which statistics can play a role. In all that has
been said here, however, it should be obvious that statistical information is regarded
not as a basis for converting the linguistic{symbolic model to a stochastic one but
as an aid for application-speci­ c tuning.

6. Conclusion

This paper has been concerned with a computational linguistic model of phonolog-
ical interpretation which provides a framework in which multilinear parallel event
representations of speech utterances are temporally interpreted using ­ nite-state
machines. Rather than concentrate purely on system performance and recognition
results, the aim of this approach has been to develop a principled, formally speci­ ed
linguistic theory of phonological interpretation which investigates the role played by
symbolic constraints on well-formedness and provides important ­ ne-grained knowl-
edge representations for speech-technology applications. The informational struc-
tures used by this system could on the one hand be enhanced by statistical infor-
mation for application-speci­ c tuning but also be made available to other stochastic
word-recognition systems for the purposes of structural ­ ne-tuning. This approach is
directly relevant to multi-sensor input applications (see Carson-Berndsen 1999a; b),
since the ­ nite-state methodology and the event logic provide an overall framework
for the temporal interpretation of parallel structures.

The Time Map model addresses a number of important issues that have arisen
in connection with phonological theories and speech recognition. Firstly, it provides
a computational linguistic solution to the new word problem in speech recognition
by using a complete ­ nite-state phonotactics of the language to de­ ne the notion of
well-formedness. Secondly, it provides the phonological description with a temporal
interpretation in terms of an event logic which not only deals with abstract phono-
logical examples but also with concrete speech tokens. Thirdly, coarticulation and
other phonological processes are modelled in a multilinear representation by provid-
ing an interpretation of overlap and gap phonomenon avoiding a rigid segmentation
into non-overlapping phonemes. Fourthly, the model copes with underspeci­ cation
by employing constraint relaxation and constraint enhancement. Finally, since the
model is knowledge based, it has not been pre-tuned to any particular speaker or
any particular corpus, although ways in which this could be done using statistical
information were discussed.

The model has been fully implemented and tested in an incremental linguistic
speech-recognition system. In that system, the Time Map model provided the formal
foundation for the phonological parsing component, which was interfaced with an
autonomous feature-extraction component (H�ubener & Carson-Berndsen 1994) and
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a word parser. However, since the model is independent of these other components,
it should be immediately possible to interface it directly|or use it in parallel|
with other multilinear recognition systems, such as those suggested by Kirchho¬
(1996) or King et al . (1998), in which the paradigms being followed are the hidden
Markov approach and the connectionist approach, respectively. Although the Time
Map model was developed originally in the phonetic and phonological knowledge
domains, it does generalize to higher levels in the prosodic hierarchy, thus avoiding
the need for a level-speci­ c segmentation.
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Discussion

S. J. Young (University of Cambridge, UK ). The main focus of your presentation
was on the recognition of new words. But are new words hard to recognize? It seems
to me that the most challenging outstanding problems in speech recognition lie not
in word models but in language modelling. An important useful property of the
standard statistical speech-recognition architecture is bootstrapping, that is, using a
model trained on a small dataset to annotate a much larger dataset, which can then
be used for training a larger model.

J. Carson-Berndsen. Using phonotactic models reduces the need for training our
speech recognizer on a large corpus, because of the linguistic generality of the con-
straints. For example, we noticed that a consonant sequence de­ ned by our German
model, /-lnst/, did not occur in any word in the dictionary. But intuition suggested
it would be phonotactically possible in, for example, the coinage k�olnst du?, Do you
cologne?, which native speakers, when asked, accepted as well-formed.

D. Kazakov (University of York, UK ). How well does this approach perform com-
pared with methods based on analogy? For example, one accepts blant as a likely
word, because one knows that plant, plaster and bluster are words.

J. Carson-Berndsen. The two approaches are complementary: the features and
multilinear representations of my system could be employed in the computation of
analogy.

H. Alshawi (AT & T Laboratories, Florham Park, NJ, USA). For the recognition
of foreign names and loan-words, do you envisage a universal phonotactic model, or
several language-speci­ c models applied in parallel?

J. Carson-Berndsen. Since we are already using di¬erent models for di¬erent
languages, we could use several of them as parallel sub-models in that case. I do not
think a single universal model would be feasible.

F. Pereira (AT & T Laboratories, Florham Park, NJ, USA). Another advantage of
the standard speech-recognition architecture is that multiple sources of uncertainty
can be resolved by exploiting a mathematically well-de­ ned combination of prob-
abilistic models of di¬erent levels of structure. For example, voicing detection can
be rather unreliable, but the word model could ameliorate the uncertainty of the
acoustic analysis.

J. Carson-Berndsen. Our model has three mechanisms for coping with such uncer-
tainty. First, there is the di¬erential weighting of constraints and the relaxation of, for
example, infrequency constraints. Second, by using underspeci­ ed representations,
variable or uncertain features can be omitted. Third, we try to defer decisions until
late in the analysis process, to avoid incorrect commitment at an earlier stage. In
this way, for example, phonotactic constraints could ­ ll in information missing from
the signal analysis.
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